LID Case Studies

Southeast Stormwater Association Stormwater Solutions for Your Jurisdiction April 20, 2012

> Jeffrey L. Herr, P.E., D.WRE National Stormwater Leader Brown and Caldwell & Brett Cunningham, P.E. Water Resources Director Jones Edmunds

D W

Study Concept

- Gain resolution on differences within land use types
- Are there internal differences big enough to consider?
- Swale vs Curb and Gutter appeared as a practical option
- Grassed conveyance swales are a common drainage feature in Sarasota County and are a LID practice

Versus

Environmental Engineers & Consultant

Planning

- Site Characteristics:
 - other than drainage type,
 all else equal to extent
 possible, focus on land use
 - all sites within the Phillippi Creek basin
- Study period of 7 months or 40 total samples (even site distribution)

wironmental Engineers & Consu

Swale 1 - Nassau

Curb and Gutter 1 - Dawson

Field Methods

- Use ISCO Avalanche autosamplers to collect flow-weighted samples, monitor rainfall and discharge
- 0.2 inches of rain or more in less than 1 hour
- Adjust sample collection rates to match site specific conditions
- Followed all pertinent FDEP SOPs

Results

Physical removal of particulates drives concentration reductions

Infiltration in swales drive volume reductions

Pollutant loads are reduced by both mechanisms

Concentration Results

	in Mean
6.17*	68%
5.62	72%
0.55	22%
0.99	22%
0.52	15%
127.7	78%
15.35	71%
	15.35 en event of record

ND

Environmental Engineers & Consultant.

Runoff Results

- Average runoff coefficients were 58% lower at swale sites
- Three times as much rain without runoff at swale sites
- Annual runoff difference in total flow volume is approximately 5 times lower at swale sites

Results: Pollutant Loads

Observed 93% lower load of TN 94% TKN and 81% NOx Observed 83% lower load of TP 69% Ortho-Phosphorus Observed 95% lower load of TSS Observed 93% lower load of BOD

Implications – Local Scale Matters

Town of Melbourne Beach Challenges

- Lack of real estate for improvements
- Expensive cost of property acquisition
- Difficulty of regional projects due to outfall locations
- Typically older development
- Typically high directly connected impervious areas (DCIA)

Town Needs

Facing large pollutant load reduction goals (TMDLs)

Will not be able to meet these goals with conventional and regional systems

LID practices will be important for retrofits

Basin 4: Sunset Blvd.

24 acre basin – Residential and SR A1A runoff
 Right-of-Way availability – crowned median
 Grassed edging - flows straight downhill to river
 Erosion problems

Sunset Blvd Project Elements

- 1,000 LF median bioretention swale
- Use of curb and flumes to protect median
- Pervious pavers at median ends
- Required re-construction of roadway
- Native plants used, especially on west end with higher groundwater table
- Areas in front of lots graded for rain garden at resident's request
- \$2,533 / Ibs/yr

Curb Application for Water Quality Benefit

- Off-line curb and flume system
- Prevents erosion
- Protects system (many of Town's swales filled in)
- Application for retrofitting older developed areas
- Curbs common beachside and on Merritt Island where regional and conventional treatment is not possible

West End

Pre and Post Construction

Sunset Blvd Performance

- Town received approximately 8 inches of rainfall during October 7 - 9, 2011.
- Visual monitoring performedSystem exceeded expectations

No-Observed Runoff

Retrofit of the Gwinnett County DWR Facility Using Low Impact Development Practices

> Jeff Herr, P.E., D.WRE National Stormwater Leader jherr@brwncald.com

Project Objectives

- Determine if it is possible to infiltrate and store/reuse onsite the runoff from the 95th percentile storm event
- Determine effectiveness of different LID practices
- Determine construction and operation and maintenance requirements for infiltration and storage/reuse facilities
- Determine capital, O&M and life cycle costs for different types of LID practices
- Use constructed project to educate developers, engineers, and the public on the use of LID practices
- Promote the use of viable LID practices in Gwinnett County

Project Site Aerial Photograph

~31 acres total, 18.5 acres impervious, 60% impervious.

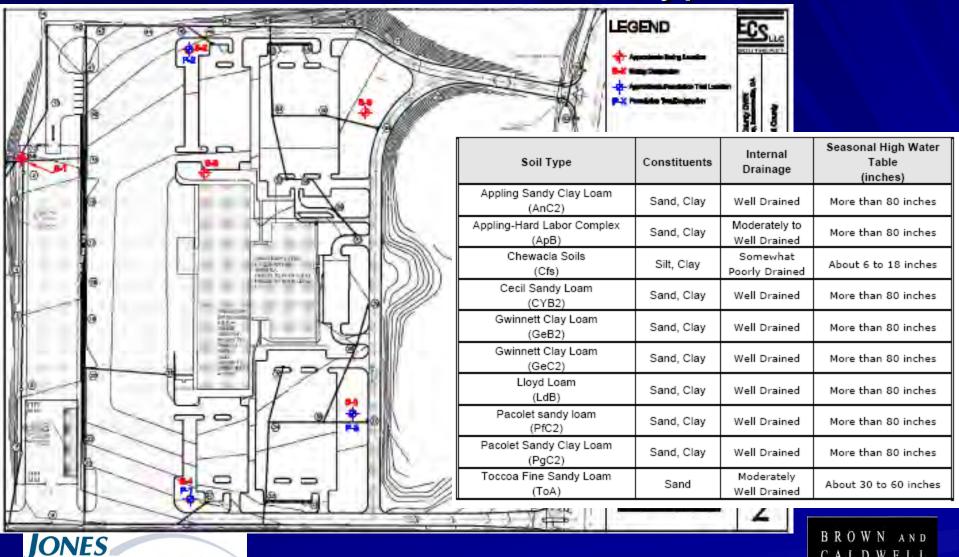
Decided only the immediate site would be used for treatment; no off-site treatment.

Wanted to demonstrate LID can be used for any level of imperviousness allowed by County code; residential, commercial, or industrial.

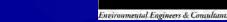
Completed Project Site Drainage Sub-Basin Delineation

Developed Historical Annual Rainfall Probability Distribution for Atlanta

Rainfall Event Range (inches)	Mean Rainfall Depth (inches)	Mean Rainfall Duration (hours)	Number of Annual Events in Range
0.11-0.20	0.151	3.69	16.43
0.21-0.30	0.254	4.73	10.17
0.31-0.40	0.353	5.21	7.97
0.41 - 0.50	0.45	5.74	6.58
0.51 -1.00	0.713	7.68	17.96
1.01 - 1.50	1.219	10.74	6.94
1.51 - 2.00	1.726	12.98	3.51
2.01 - 2.50	2.209	15.28	1.42
2.51 - 3.00	2.694	16.88	0.84
3.01 - 3.50	3.26	22.9	0.42
3.51 - 4.00	3.741	24.36	0.28
4.01 - 4.50	4.208	17.75	0.08
4.51 - 5.00	4.703	28.33	0.06
5.01 - 6.00	5.638	27.33	0.12
6.01 - 7.00	-	-	0.00
7.01 - 8.00	7.31	48	0.02
8.01 - 9.00	8.65	39	0.02
> 9.00	-	-	-


1.73 inch event = 95th %

Total average annual rainfall = 49.6 inches.



Performed Subsurface Testing and **Evaluated Site Soil Types**

EDMUNDS

CALDWELL

Completed In-Situ Infiltration Testing at Proposed Bottom of Engineered Soils

Interval #	Testing Time (min.)	Elapsed Duration (min.)	Depth to Water (in.)	Measured Decrease (in.)	Interval Percolation Rate (min./in.)
Start	1:35 PM	-	17.76	-	-
1	1:50 PM	15	19.08	1.32	11.4
2	2:05 PM	15	20.28	1.20	12.5
3	2:20 PM	15	21.60	1.32	11.4
4	2:35 PM	15	22.92	1.32	11.4
5	2:50 PM	15	24.24	1.32	11.4

Interval #	Testing Time (min.)	Elapsed Duration (min.)	Depth to Water (in.)	Measured Decrease (in.)	Interval Percolation Rate (min./in.)
Start	1:30 PM	-	11.16	•	
1	1:45 PM	15	11.40	0.24	62.5
2	2:00 PM	15	11.76	0.36	41.7
3	2:15 PM	15	12.00	0.24	62.5
4	2:30 PM	15	12.24	0.24	62.5
5	2:45 PM	15	12.48	0.24	62.5

Measured infiltration rate = 1 to 6 inches per hour at 6-8 ft below existing grade; proposed bottom elevation of infiltration practices.

Goal to Include at Least One of Each of These LID Practices in the Design

Low Impact Development Practice

Water Storage and Reuse (Cistern)

Tree Box Filter

Enhanced Tree Coverage

Bioretention Area

Grass Parking Spaces

Green Roof

Pervious Pavement or Pavers

Rain Garden*

Vegetated Swale

Engineered Wetland**

Final Preliminary Plan

Met with all DWR Department Managers and incorporated comments.

Estimated Runoff Volumes and Load Reductions for Sub-Basins and Project Site

Reduction of Runoff from LID Practices				
Drainage Area	Average Annual Runoff with LID (cu. ft.)	Average Annual Runoff (cu. ft.)	Percent Runoff Reduced by LID Practices	
Prop-1	16,938	161,735	90%	
Prop-2	78,594	592,068	87%	
Prop-3	67,893	541,427	87%	
Prop-4	29,414	368,192	92%	
Prop-5	93,402	988,638	91%	
Prop-6	31,768	226,155	86%	
Prop-7	15,742	120,878	87%	
Prop-8	30,242	378,347	92%	
Prop-9	44,681	545,877	92%	
Prop-10	22,459	246,852	91%	
TOTAL	431,133	4,170,169	90%	

Reduction in Pollutant Loading from LID Practices				
Pollutant	Pre LID (Ib/yr)	Post LID (Ib/yr)	Percent Reduction	
Total N	465	48	90%	
Total P	81	8	90%	
BOD	2,494	258	90%	
TSS	24,391	2,521	90%	
FC*	23,617	2,442	90%	

*Billion Counts/yr

Moving Forward

- Estimated Construction Cost = \$1,000,000
- Estimated Annual O&M cost = \$90,000
- Submitted 319 (h) grant application to GA EPD; Requested \$600,000 with \$400,000 local match
- If grant approved, construction scheduled for late 2012
- Post construction monitoring proposed for each type of LID practice
- Construction of Phase I (bioretention area and roof rainwater harvesting system) completed in July 2011 using another 319 (h) grant

Phase I Construction – Completed in one month, July 2011

Gwinnett County Department Bioretention Facility: Protecti

What is a Bioretention System?

- Designed to infiltrate pollutants into the soil before stormwater reaches a stream or detention pond
- Infiltration helps mitigate the high flows from impervious areas that can cause erosion in streams
- This bioretention area was constructed in a 2,600 square foot grass area and treats stormwater runoff from a 0.6 acre parking area

Pre-Construction Site Area

Drainage area = 1 ac Imperv. area = 0.7 ac (parking area)

Parking drains to one curb inlet.

0.3 acre raised grass area available.

Excavation and Underdrain Installation

Excavated area for engineered soils (3-4 ft) and loosened soil to a depth 2 ft. below proposed bottom of engineered soils. Installed 6-inch HDPE underdrain and gravel trench with 15-inch risers.

Engineered Soils and Gravel Backfill

Installed engineer soils in 1 ft lifts and watered to consolidate.

Installed gravel trenches across area to aid in runoff distribution.

Backfill Completion and Final Grading

Installed remaining engineered soils in 1 ft lifts and watered to consolidate.

Final surface grading 3-5H:1V slopes

Surface Treatment – Cobble, mulch, plants and sod

3-inch tall curb around inlet; runoff overflows into curb inlet when pond is full.

Underdrain and risers have closed valve; Installed to be used only if pond does not infiltrate naturally.

Construction cost = \$100,000 Primary cost was engineered soil purchase.

Completed Project

Completed Project

Frequent watering was initially required due to sandy soils.

Installed a 6,000 gallon tank next to building and roof rainwater harvesting system in September for watering bioretention. (1-inch rain = 1,000 gallons of water)

